Author:
Ma Xiaoyan,Yang Jinyan,Wu Hanwen,Jiang Weili,Ma Yajie,Ma Yan
Abstract
Field experiments were conducted in 2013 and 2014 to determine the influence of velvetleaf densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m−1of row on cotton growth and yield. The relationship between velvetleaf density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.44 to 0.48 velvetleaf m−1of row would result in a seed cotton yield loss of 50%. Velvetleaf remained taller and thicker than cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing velvetleaf density. Moreover, velvetleaf interference delayed cotton maturity, especially at velvetleaf densities of 1 to 8 plants m−1of row, and cotton boll number and weight, seed numbers per boll, and lint percentage were also reduced. Fiber quality was not influenced by weed density when analyzed over 2 yr; however, fiber length uniformity and micronaire were adversely affected in 2014. Velvetleaf intraspecific competition resulted in density-dependent effects on weed biomass, ranging from 97 to 204 g plant−1dry weight. Velvetleaf seed production per plant or per square meter was indicated by a logarithmic response. At a density of 1 plant m−1of cotton row, velvetleaf produced approximately 20,000 seeds m−2. The adverse impact of velvetleaf on cotton growth and development identified in this study have indicated the need for effective management of this species when the weed density is greater than 0.25 to 0.5 plant m−1of row and before the weed seed maturity.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献