Spatial Pattern of Weeds Based on Multispecies Infestation Maps Created by Imagery

Author:

Longchamps Louis,Panneton Bernard,Reich Robin,Simard Marie-Josée,Leroux Gilles D.

Abstract

Weeds are often spatially aggregated in maize fields, and the level of aggregation varies across and within fields. Several annual weed species are present in maize fields before postemergence herbicide application, and herbicides applied will control several species at a time. The goal of this study was to assess the spatial distribution of multispecies weed infestation in maize fields. Ground-based imagery was used to map weed infestations in rain-fed maize fields. Image segmentation was used to extract weed cover information from geocoded images, and an expert-based threshold of 0.102% weed cover was used to generate maps of weed presence/absence. From 19 site-years, 13 (68%) demonstrated a random spatial distribution, whereas six site-years demonstrated an aggregated spatial pattern of either monocotyledons, dicotyledons, or both groups. The results of this study indicated that monocotyledonous and dicotyledonous weed groups were not spatially segregated, but discriminating these weed groups slightly increased the chances of detecting an aggregated pattern. It was concluded that weeds were not always spatially aggregated in maize fields. These findings emphasize the need for techniques allowing the assessment of weed aggregation prior to conducting site-specific weed management.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spatial and Temporal Distribution of Ecballium elaterium in Almond Orchards;Agronomy;2019-11-13

2. Advances in Silviculture of Intensively Managed Plantations;Current Forestry Reports;2018-02-13

3. Review of Automated Weed Control Approaches: An Environmental Impact Perspective;Communications in Computer and Information Science;2018

4. Precision maize cultivation techniques;Burleigh Dodds Series in Agricultural Science;2017-07-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3