Dissipation of Fomesafen, Saflufenacil, Sulfentrazone, and Flumioxazin from a Tennessee Soil under Field Conditions

Author:

Mueller Thomas C.,Boswell Bill W.,Mueller Sara S.,Steckel Lawrence E.

Abstract

Fomesafen, saflufenacil, and sulfentrazone had similar parameters for their mass spectrometry analysis, all being analyzed in negative mode with similar ionization energies. Flumioxazin was analyzed in positive mode using different ionization temperatures and voltage energies, and a larger injection volume (10 µl compared with 2–5 µl) due to lower liquid chromatography–mass spectrometry (LC-MS) detector response. Quantitative limits of detection in soil were < 5 parts per billion by weight for all herbicides. The field study was conducted three times (2010, 2011, 2012) with four blocks of each treatment each year. Herbicide concentrations over time were based on field samples that were later extracted and quantified using the described LC-MS procedures. Data were examined using a simple first-order (SFO) equation with each year-by-herbicide treatment combination regressed using SigmaPlot version 12.5 to determine regression parameters. The SFO rate constant was used to determine a half life, or DT50(in days) for each curve. All data were analyzed using a GLMMix ANOVA procedure using SAS version 9.3 and contrast statements were used to directly compare each herbicide comparison. Slopes for each herbicide use the SFO curve and were estimated using SAS. The order from shortest to longest DT50was flumioxazin (21.1 d) = saflufenacil (21.4 d) < fomesafen (45.6 d) < sulfentrazone (70.8 d). These results concur with the labeled recrop recommendations after application for flumioxazin and saflufenacil, which have shorter cotton plant-back restrictions compared with sulfentrazone and fomesafen. In these studies, none of the herbicides was highly persistent (all half-lives < 100 d), so none would be expected to be persistent pollutants in the environment, although further research is needed in this area.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3