Author:
Bernstein Emily R.,Stoltenberg David E.,Posner Joshua L.,Hedtcke Janet L.
Abstract
Grower adoption of no-tillage (NT) approaches to organic soybean production has been limited, in part because of the perceived risks of ineffective cover crop management and lack of season-long weed suppression. We conducted research in 2008 and 2009 to assess those risks by quantifying the effects of winter rye cover-crop management (tilling, crimping, or mowing), soybean planting date (mid May or early June), and row width (19 or 76 cm) on weed recruitment, emergence patterns, season-long suppression, and late-season weed community composition in transitional organic production systems. The weed plant community consisted largely of summer annual species in each year, with velvetleaf or common lambsquarters as the most abundant species. Seedling recruitment from the soil seedbank varied between years, but velvetleaf recruitment was consistently greater in the tilled rye than in the NT rye treatments. Weed emergence tended to peak early in the season in the tilled rye treatment, but in the NT rye treatments, the peak occurred in mid or late season. More-diverse summer annual and perennial species were associated with the NT rye treatments. Even so, weed suppression (as measured by late-season weed shoot mass) was much greater in crimped or mowed rye NT treatments than it was in the tilled treatment. Weed suppression among NT rye treatments was greater in 19- than in 76-row spacing treatments in each year and was greater for mid May than it was for early June planted soybean in 2009. The NT planting of soybean into standing rye before termination (crimping or mowing) facilitated timely planting of soybean, as well as effective, season-long weed suppression, suggesting that those approaches to rye and weed management are of less risk than those typically perceived by growers. Our results suggest that NT systems in winter rye provide effective weed-management alternatives to the typical tillage-intensive approach for organic soybean production.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献