Mechanisms of Yield Loss in Maize Caused by Weed Competition

Author:

Cerrudo Diego,Page Eric R.,Tollenaar Matthijs,Stewart Greg,Swanton Clarence J.

Abstract

The physiological process underlying grain yield (GY) loss in maize as a result of weed competition is not understood clearly. We designed an experiment to test the hypotheses that early season stress caused by the presence of neighboring weeds will increase plant-to-plant variability (PPV) of individual plant dry matter (PDM) within the population. This increase in PPV will reduce GY through a reduction in harvest index (HI). Field experiments were conducted in 2008, 2009, and 2010. A glyphosate-resistant maize hybrid was cropped at a density of 7 plants m−2. As a model weed, winter wheat was seeded at the same time as maize and controlled with glyphosate at the 3rd or 10th to 12th leaf-tip stage of maize. Weed competition early in the development of maize decreased PDM and GY. This reduction in PDM, which occurred early in the development of maize, was attributed initially to a delay in rate of leaf appearance. Reductions in PDM were accompanied by an increase in PPV of PDM. This increase in PPV, however, did not reduce HI and did not contribute to the GY reductions created by weed competition, as hypothesized. As weed control was delayed, a reduction in fraction of photosynthetically active radiation (fIPAR) accounted for a further reduction in PDM and notably, a reduction in DMA from 17th leaf-tip stage through to maturity. The rapid loss of PDM and the subsequent inability to accumulate dry matter during maturation accounted for a rapid decline in kernel number (KN) and kernel weight (KW).

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3