Mechanisms of interference of smooth pigweed (Amaranthus hybridus) and common purslane (Portulaca oleracea) on lettuce as influenced by phosphorus fertility

Author:

Santos Bielinski M.,Dusky Joan A.,Stall William M.,Bewick Thomas A.,Shilling Donn G.

Abstract

Greenhouse studies were conducted to assess the intensity of smooth pigweed and common purslane aboveground interference (AI) and belowground interference (BI) with lettuce and to determine primary mechanisms of interference of each species as affected by P fertility rates. Lettuce was transplanted in mixtures with either smooth pigweed or common purslane according to four partitioning regimes: no interference, full interference, BI, and AI. Soil used was low in P for optimum lettuce yields, therefore P was added at rates of 0, 0.4, and 0.8 grams of P per liter of soil. Shoot and root biomass and plant height were measured for each species, as well as P tissue content. The data obtained indicated that smooth pigweed interfered with lettuce primarily through light interception by its taller canopy. A secondary mechanism of interference was the absorption of P from the soil through luxury consumption, increasing the P tissue content without enhancing smooth pigweed biomass accumulation. In contrast, common purslane competed aggressively with lettuce for P. Because the weed grew taller than lettuce, light interception was a secondary interference factor.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference16 articles.

1. Influence of smooth pigweed and common purslane densities on lettuce yields as affected by phosphorus fertility;Santos;Proc. Fla. State Hortic. Soc,1997

2. Approaches for improving crop competitiveness through the manipulation of fertilization strategies;DiTomaso;Weed Sci,1995

3. Effects of phosphorus fertility on competition between lettuce (Lactuca sativa) and spiny amaranth (Amaranthus spinosus);Shrefler;Weed Sci,1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3