Effects of Aminopyralid on Ponderosa Pine (Pinus ponderosa)

Author:

Wallace John M.,Prather Timothy S.,Peterson Vanelle

Abstract

AbstractInvasive weed control within cleared, forested sites in the inland Northwest is complicated by the susceptibility of ponderosa pine to synthetic auxin herbicide injury, used to control broadleaf weeds. Herbicide injury may lead to decreased canopy volume and variable growth patterns of ponderosa pine, which is a commercially important tree species. Herbicide injury to ponderosa pine can be decreased with dormant-season applications, a timing suited to control many weeds that may occur within ponderosa pine sites. However, spring-timed herbicide applications are needed to control other weeds, such as meadow hawkweed, and that application timing coincides with active ponderosa pine growth. In this study, we determined the level of injury to ponderosa pine resulting from spring-timed aminopyralid, clopyralid, and picloram applications beneath ponderosa pine canopies. Herbicide injury to leader and lateral candles and needle elongation was evaluated 1 and 12 mo after treatment (MAT). Low rates of aminopyralid alone (0.05 kg ae ha−1 [3 fl oz ac−1]) and aminopyralid + clopyralid (0.05 + 0.10 kg ae ha−1) resulted in herbicide injury ratings that did not differ from untreated trees. The high rate of aminopyralid (0.12 kg ae ha−1) resulted in leader candle injury on 75% of treated trees, 5% of which were necrotic at 12 MAT. Herbicide injury was observed on 30% of lateral candles. In comparison, picloram (0.28 kg ae ha−1) treatments resulted in necrosis or mortality of leader and lateral candles on 65% and 40% of trees, respectively, at 12 MAT. Results suggest that use of low rates of aminopyralid alone or in combination with low rates of clopyralid minimizes the risk of nontarget injury to ponderosa pine (> 5 yr old) while controlling hawkweed with a spring application.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3