Dissipation of Fomesafen in New York State Soils and Potential to Cause Carryover Injury to Sweet Corn

Author:

Rauch Bradley J.,Bellinder Robin R.,Brainard Daniel C.,Lane Mike,Thies Janice E.

Abstract

The manufacturer's recommended rate for fomesafen in snap beans, dry beans, and soybeans may cause carryover injury in sweet corn. A field experiment, a survey, and multiple greenhouse experiments were conducted to (1) estimate the fomesafen residue concentrations in the soil that might result from use of lower than registered rates, (2) estimate fomesafen residue concentrations in growers' fields and evaluate grower practices for their effects on carryover potential, and (3) investigate the effects of soil type and sweet corn variety on the potential for fomesafen to cause injury to sweet corn. Results of the dissipation study predicted average soil concentrations to be approximately 0.019 mg fomesafen/kg soil at the start of the sweet corn planting season. Half-life values ranged between 28 and 66 d, with an average of 50 d. Residues in grower fields were slightly less than those found in the dissipation study. Injury from fomesafen varied significantly by sweet corn variety and by soil type. Sweet corn grown in soils with high organic matter and low pH were most susceptible to injury from fomesafen. At high rates of fomesafen (0.12 mg/kg), reductions in dry weight of sweet corn varieties ranged from 5 to 60%. At rates of fomesafen slightly higher than those detected in field soils at the time of sweet corn planting (0.03 mg/kg), dry weight either increased slightly (variety trial) or decreased by 6 to 12% (soil-effect trial) depending on soil type. The risk of sweet corn yield losses because of fomesafen carryover appear relatively low. Growers can reduce the risk of carryover injury by planting tolerant varieties in fields where fomesafen was applied the preceding year.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference24 articles.

1. Response of Dry Bean and Weeds to Fomesafen and Fomesafen Tank Mixtures1

2. Temperature and relative humidity effects on diphenylether herbicides;Rex;Weed Technol.,1992

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3