Management Filters and Species Traits: Weed Community Assembly in Long-Term Organic and Conventional Systems

Author:

Ryan Matthew R.,Smith Richard G.,Mirsky Steven B.,Mortensen David A.,Seidel Rita

Abstract

Community assembly theory provides a useful framework to assess the response of weed communities to agricultural management systems and to improve the predictive power of weed science. Under this framework, weed community assembly is constrained by abiotic and biotic “filters” that act on species traits to determine community composition. We used an assembly approach to investigate the response of weed seed banks to 25 yr of management-related filtering in three different row-crop management systems in southeastern Pennsylvania: organic manure-based, organic legume-based, and conventional. Weed seed banks were sampled in April of 2005 and 2006 and quantified by direct germination in a greenhouse. We also assessed the filtering effects of weed management practices and relationships between assembled seed bank and emergent weed communities by allowing or excluding weed control practices within each management system and measuring emergent weed community response. Germinable weed seed bank densities and species richness in the final year of the study were over 40% and 15% higher, respectively, in the organic systems relative to the conventional system. Seed bank community structure in the organic systems was different from the conventional system, and the relationships between assembled seed banks and the emergent flora varied. Primary tillage, weed control, timing of planting, and fertility management appeared to be the main filters that differentiated weed seed banks in the three systems. Weed life history, emergence periodicity, seed size, and responsiveness to soil fertility and hydrology appeared to be the most important functional traits determining how weed species responded to management-related filters. Our results suggest that management systems can exert strong filtering effects that can persist over relatively long (greater than one growing season) time scales. Legacy effects of community-level filtering might be more important than previously assumed, and should be incorporated into predictive models of weed community assembly.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3