Soil Organic Matter Content and Volumetric Water Content Affect Indaziflam–Soil Bioavailability

Author:

Jeffries Matthew D.,Gannon Travis W.

Abstract

Indaziflam is a cellulose biosynthesis-inhibiting herbicide for annual weed control in various agricultural systems. Sporadic cases of unacceptable injury to desirable plants have been reported after indaziflam application, which may have been due to conditions favoring increased indaziflam–soil bioavailability. Research was conducted from 2013 to 2015 on a sandy soil to elucidate the effects of soil organic matter content (SOMC) and soil volumetric water content (SVWC) on indaziflam–soil bioavailability. Indaziflam was applied (50 or 100 g ha–1) at fall only, fall plus spring, and spring only timings to plots in a factorial arrangement of SOMC, pre–indaziflam application (PrIA) SVWC, and post–indaziflam application (PoIA) SVWC. After application, field soil cores were collected for a subsequent greenhouse bioassay experiment, where foliage mass reduction of perennial ryegrass seeded from 0 to 15 cm soil depth was used as an indicator of indaziflam–soil bioavailability throughout the profile. Significant edaphic effects were observed at 0 to 2.5, 2.5 to 5, and 5 to 7.5 cm depths, with increased bioavailability at low compared with high SOMC. Pre–indaziflam application SVWC did not affect bioavailability, whereas PoIA high SVWC increased indaziflam–soil bioavailability at 2.5 to 7.5 cm depth compared with PoIA low SVWC. Low SOMC–PoIA high SVWC decreased perennial ryegrass foliage mass 40 and 37% at 5 to 7.5 cm depth from cores collected 10 and 14 wk after treatment, respectively, whereas reductions from all other SOMC–PoIA SVWC combinations were < 12% and did not vary from each other. Pearson's correlation coefficients showed a moderate, positive relationship between perennial ryegrass mass reductions at 0 to 2.5, 2.5 to 5, 0 to 5, and 0 to 10 cm depths and hybrid bermudagrass cover reduction, which suggests conditions favoring increased indaziflam–soil bioavailability can adversely affect plant growth. Data from this research will aid land managers to use indaziflam effectively without adversely affecting growth of desirable species.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3