Effect of Carrier Water Hardness and Ammonium Sulfate on Efficacy of 2,4-D Choline and Premixed 2,4-D Choline Plus Glyphosate

Author:

Devkota Pratap,Johnson William G.

Abstract

Spray water quality is an important consideration for optimizing herbicide efficacy. Hard water cations in the carrier water can reduce herbicide performance. Greenhouse studies were conducted to evaluate the influence of hard water cations and the use of ammonium sulfate (AMS) on the efficacy of 2,4-D choline and premixed 2,4-D choline plus glyphosate for giant ragweed, horseweed, and Palmer amaranth control. Carrier water hardness was established at 0, 200, 400, 600, 800, or 1,000 mg L−1using CaCl2and MgSO4, and each hardness level consisted of without or with AMS at 10.2 g L−1. One-third of the proposed use rates of 2,4-D choline at 280 g ae ha−1and 2,4-D choline plus glyphosate at 266 plus 283 g ae ha−1, respectively, were applied in the study. An increase in carrier water hardness showed a linear trend for reducing 2,4-D choline and 2,4-D choline plus glyphosate efficacy on all weed species evaluated in both studies. The increase in water hardness level reduced giant ragweed control with 2,4-D choline and the premix formulation of 2,4-D choline plus glyphosate to a greater extent without AMS than it did with AMS in the spray solution. Increases in water hardness from 0 to 1,000 mg L−1reduced weed control 20% or greater with 2,4-D choline. Likewise, the efficacy of the premixed 2,4-D choline plus glyphosate was reduced 21% or greater with increased water hardness from 0 to 1,000 mg L−1. The addition of AMS improved giant ragweed, horseweed, and Palmer amaranth control ≥ 17% and ≥ 10% for 2,4-D choline and 2,4-D choline plus glyphosate application, respectively. The biomass of all weed species was reduced by ≥ 8% and ≥ 5% with 2,4-D choline and 2,4-D choline plus glyphosate application, respectively, when AMS was added to hard water.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3