Integrating Management of Soil Nitrogen and Weeds

Author:

Wortman Sam E.,Davis Adam S.,Schutte Brian J.,Lindquist John L.

Abstract

Knowledge of the soil nitrogen (N) supply and the N mineralization potential of the soil combined with an understanding of weed-crop competition in response to soil nutrient levels may be used to optimize N fertilizer rates to increase the competitive advantage of crop species. A greenhouse study (2006) and field studies (2007 to 2008) in Illinois and Nebraska were conducted to quantify the growth and interference of maize and velvetleaf in response to varying synthetic N fertilizer rates in soils with high and low N mineralization potential. Natural soils were classified as having “low mineralization potential” (LMP), while soils amended with composted manure were classified as having “high mineralization potential” (HMP). Maize and velvetleaf were grown in monoculture or in mixture in both LMP and HMP soils and fertilized with zero, medium, or full locally recommended N rate. In the greenhouse, velvetleaf interference in maize with respect to plant biomass increased as N rate increased in the HMP soil, whereas increasing N rate in the LMP soil reduced velvetleaf interference. In contrast, velvetleaf interference in maize decreased as N rate increased regardless of soil class in the field experiment. With respect to grain yield, velvetleaf interference in maize was unaffected by N rate or soil class. In both greenhouse and field experiments, velvetleaf biomass was greater in the HMP soil class, whereas maize interference in velvetleaf was generally greater in the LMP soil class. While soil N levels influenced weed-crop interference in the greenhouse, the results of the field study demonstrate the difficulty of controlling soil nutrient dynamics in the field and support a maize fertilization strategy independent of weed N use considerations.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3