Author:
Perry D. H.,McElroy J. S.,Dane F.,van Santen E.,Walker R. H.
Abstract
Amicarbazone is a photosystem II (PSII)-inhibiting herbicide in the triazolinone family, which is similar in mode of action to the triazines. Annual bluegrass is a cool-season weed and has shown resistance to some PSII-inhibiting herbicides. The objective was to evaluate triazine-resistant and -susceptible annual bluegrass populations for potential cross-resistance to amicarbazone. Two triazine-resistant (MS-01, MS-02) and triazine-susceptible (AL-01, COM-01) annual bluegrass populations were treated with amicarbazone, atrazine, and simazine at 0.26, 1.7, and 1.7 kg ai ha−1, respectively. All herbicide treatments controlled the susceptible populations greater than 94% 2 wk after treatment (WAT). No visual injury of MS-01 and MS-02 was observed at any time following herbicide treatment. Quantum yield (ΦPSII) of annual bluegrass was measured 0 to 72 h after application (HAA) to determine the photochemical effects of amicarbazone compared to other PSII inhibitors. ΦPSIIof triazine-susceptible populations was reduced at all measurement times by all three herbicides. However, amicarbazone decreased ΦPSIIof susceptible populations faster and greater than atrazine and simazine at most measurement times. Amicarbazone did not reduce ΦPSIIof the MS-01 population. Amicarbazone significantly reduced ΦPSIIof the MS-02 population during several measurement timings; however, these reductions were short-lived compared to the susceptible populations and no trend in ΦPSIIreduction was observed. Sequencing of thepsbAgene revealed a Ser to Gly substitution at amino acid position 264 known to confer resistance to triazine herbicides. These data indicate amicarbazone efficiently inhibited PSII of susceptible annual bluegrass populations; however, triazine-resistant annual bluegrass populations with Ser264to Gly mutations are cross-resistant to amicarbazone.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献