Capture of a Transition State Using Molecular Dynamics: Creation of an Intercalation Site in dsDNA with Ethidium Cation

Author:

Monaco Regina R.1

Affiliation:

1. Department of Environmental Chemistry, Mailman School of Public Health, Columbia University, New York NY, 10032, USA

Abstract

The mechanism of intercalation and the ability of double stranded DNA (dsDNA) to accommodate a variety of ligands in this manner has been well studied. Proposed mechanistic steps along this pathway for the classical intercalator ethidium have been discussed in the literature. Some previous studies indicate that the creation of an intercalation site may occur spontaneously, with the energy for this interaction arising either from solvent collisions or soliton propagation along the helical axis. A subsequent 1D diffusional search by the ligand along the helical axis of the DNA will allow the ligand entry to this intercalation site from its external, electrostatically stabilized position. Other mechanistic studies show that ethidium cation participates in the creation of the site, as a ligand interacting closely with the external surface of the DNA can cause unfavorable steric interactions depending on the ligands' orientation, which are relaxed during the creation of an intercalation site. Briefly, such a site is created by the lengthening of the DNA molecule via bond rotation between the sugars and phosphates along the DNA backbone, causing an unwinding of the dsDNA itself and separation between the adjacent base pairs local to the position of the ligand, which becomes the intercalation site. Previous experimental measurements of this interaction measure the enthalpic cost of this part of the mechanism to be about −8 kcal/mol. This paper reports the observation, during a computational study, of the spontaneous opening of an intercalation site in response to the presence of a single ethidium cation molecule in an externally bound configuration. The concerted motions between this ligand and the host, a dsDNA decamer, are clear. The dsDNA decamer AGGATGCCTG was studied; the central site was the intercalation site.

Publisher

Hindawi Limited

Subject

Molecular Biology,Biochemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3