Choosing the Optimal Trigger Point for Analysis of Movements after Stroke Based on Magnetoencephalographic Recordings

Author:

Waldmann Guido12,Schauer Michael3,Woldag Hartwig1,Hummelsheim Horst1

Affiliation:

1. Neurologisches Rehabilitationszentrum Leipzig, University of Leipzig, Muldentalweg 1, 04828 Bennewitz, Germany

2. MediClin Reha-Zentrum Bad Düben, Gustav-Adolf-Straße 15, 04849 Bad Düben, Germany

3. Max Planck Institute for Human Cognitive and Brain Science, P.O. Box 500 355, 04303 Leipzig, Germany

Abstract

The aim of this study was to select the optimal procedure for analysing motor fields (MF) and motor evoked fields (MEF) measured from brain injured patients. Behavioural pretests with patients have shown that most of them cannot stand measurements longer than 30 minutes and they also prefer to move the hand with rather short breaks between movements. Therefore, we were unable to measure the motor field (MF) optimally. Furthermore, we planned to use MEF to monitor cortical plasticity in a motor rehabilitation procedure. Classically, the MF analysis refers to rather long epochs around the movement onset (M-onset). We shortened the analysis epoch down to a range from 1000 milliseconds before until 500 milliseconds after M-onset to fulfil the needs of the patients. Additionally, we recorded the muscular activity (EMG) by surface electrodes on the extensor carpi ulnaris and flexor carpi ulnaris muscles. Magnetoencephalographic (MEG) data were recorded from 9 healthy subjects, who executed horizontally brisk extension and flexion in the right wrist. Significantly higher MF dipole strength was found in data based on EMG-onset than in M-onset based data. There was no difference in MEF I dipole strength between the two trigger latencies. In conclusion, we recommend averaging in respect to the EMG-onset for the analysis of both components MF as well as MEF.

Publisher

Hindawi Limited

Subject

Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3