Subject
Electrical and Electronic Engineering,General Computer Science,Electronic, Optical and Magnetic Materials
Reference8 articles.
1. Gepperth, A. and Hammer, B., Incremental learning algorithms and applications, European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 2016. https://hal.science/hal-01418129/.
2. Kukin, K. and Sboev, A., Comparison of learning methods for spiking neural networks, Opt. Mem. Neural Networks, 2015, vol. 24, pp. 123–129. https://doi.org/10.3103/S1060992X15020095
3. Sinyavskiy, O.Y. and Kobrin, A.I., Generalized stochastic spiking neuron model and extended spike response model in spatial-temporal pulse pattern detection task, Opt. Mem. Neural Networks, 2010, vol. 19, pp. 300–309. https://doi.org/10.3103/S1060992X10040077
4. Lobo, J.L., Lana, I., Del Ser, J., Bilbao, M.N., and Kasabov, N., Evolving spiking Neural Networks for online learning over drifting data streams, Neural Networks, 2018, vol. 108, pp. 1–19. https://doi.org/10.1016/j.neunet.2018.07.014
5. Bakhshiev, A., Demcheva, A., and Stankevich, L., CSNM: The compartmental spiking neuron model for developing neuromorphic information processing systems, Stud. Comput. Intell., 2022, vol. 1008 SCI, pp. 327–333. https://doi.org/10.1007/978-3-030-91581-0_43