Investigating the Efficiency of Using U-Net, Erf-Net and DeepLabV3 Architectures in Inverse Lithography-based 90-nm Photomask Generation

Author:

Karandashev I. M.,Teplov G. S.,Karmanov A. A.,Keremet V. V.,Kuzovkov A. V.

Abstract

Abstract The paper deals with the inverse problem of computational lithography. We turn to deep neural network algorithms to compute photomask topologies. The chief goal of the research is to understand how efficient the neural net architectures such as U-net, Erf-Net and Deep Lab v.3, as well as built-in Calibre Workbench algorithms, can be in tackling inverse lithography problems. Specially generated and marked data sets are used to train the artificial neural nets. Calibre EDA software is used to generate haphazard patterns for a 90 nm transistor gate mask. The accuracy and speed parameters are used for the comparison. The edge placement error (EPE) and intersection over union (IOU) are used as metrics. The use of the neural nets allows two orders of magnitude reduction of the mask computation time, with accuracy keeping to 92% for the IOU metric.

Publisher

Allerton Press

Subject

Electrical and Electronic Engineering,General Computer Science,Electronic, Optical and Magnetic Materials

Reference26 articles.

1. Chien, P. and Chen, M., Proximity effects in submicron optical lithography, Optical Microlithography VI, International Society for Optics and Photonics, 1987, vol. 772, pp. 35–41.

2. Balasinski, A., Gangala, H., Axelrad, V., and Boksha, V. (1999, December). A novel approach to simulate the effect of optical proximity on MOSFET parametric yield, in International Electron Devices Meeting 1999, Technical Digest, Cat. IEEE., no. 99CH36318, pp. 913–916.

3. Wong, A.K.K., Resolution Enhancement Techniques in Optical Lithography, SPIE Press, 2001, vol. 47.

4. Balan N.N. et al., Basic approaches to photoresist mask generation models in computational lithography, High. Schools Bull., Proc. Electron. Eng., 2020, vol. 22, no.4, 2020, pp. 279–289.

5. Otto Oberdan, W., Garofalo Joseph, G., Low, K.K., et al., Automated optical proximity correction: a rules-based approach, Optical/Laser Microlithography VII, International Society for Optics and Photonics, 1994, vol. 2197, pp. 278–293.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3