Divergence Parametric Smoothing in Image Compression Algorithms
-
Published:2024-06
Issue:2
Volume:33
Page:97-101
-
ISSN:1060-992X
-
Container-title:Optical Memory and Neural Networks
-
language:en
-
Short-container-title:Opt. Mem. Neural Networks
Reference10 articles.
1. Chakraborty, S., Saha, A.K., Ezugwu, A.E., Agushaka, J.O., Zitar, R.A., and Abualigah, L., Differential evolution and its applications in image processing problems: A comprehensive review, Arch. Comput. Methods Eng., 2023, vol. 30, no. 2, pp. 985–1040. 2. Zhang, Y., Zhu, L., Jiang, G., Kwong, S., and Kuo, C.C.J., A survey on perceptually optimized video coding, ACM Comput. Surv., 2023, vol. 55, no. 12, pp. 1–37. 3. Singh, M. and Singh, A.K., A comprehensive survey on encryption techniques for digital images, Multimedia Tools Appl., 2023, vol. 82, no. 8, pp. 11155–11187. 4. Sebai, D. and Shah, A.U., Semantic-oriented learning-based image compression by Only-Train-Once quantized autoencoders, Signal, Image Video Process., 2023, vol. 17, no. 1, pp. 285–293. 5. Mentzer, F., Toderici, G.D., Tschannen, M., and Agustsson, E., High-fidelity generative image compression, Adv. Neural Inform. Process. Syst., 2020, vol. 33, pp. 11913–11924.
|
|