Conditions for Ultimate Boundedness of Solutions and Permanence for a Hybrid Lotka–Volterra System
-
Published:2024-06
Issue:6
Volume:68
Page:58-67
-
ISSN:1066-369X
-
Container-title:Russian Mathematics
-
language:en
-
Short-container-title:Russ Math.
Reference20 articles.
1. J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics (Cambridge Univ. Press, Cambridge, 1998).
2. E. Kazkurewicz and A. Bhaya, Matrix Diagonal Stability in Systems and Computation (Birkhäuser, Boston, 1999). https://doi.org/10.1007/978-1-4612-1346-8
3. Yu. A. Pykh, Equilibrium and Stability in Models of Population Dynamics (Nauka, Moscow, 1983).
4. Zh. Lu and W. Wang, “Permanence and global attractivity for Lotka–Volterra difference systems,” J. Math. Biol. 39, 269–282 (1999). https://doi.org/10.1007/s002850050171
5. J. Zhao and J. Jiang, “Average conditions for permanence and extinction in nonautonomous Lotka–Volterra system,” J. Math. Anal. Appl. 299, 663–675 (2004). https://doi.org/10.1016/j.jmaa.2004.06.019