Oscillation Inequalities on Real and Ergodic H1 Spaces
-
Published:2023-03
Issue:3
Volume:67
Page:42-52
-
ISSN:1066-369X
-
Container-title:Russian Mathematics
-
language:en
-
Short-container-title:Russ Math.
Subject
General Mathematics
Reference7 articles.
1. V. F. Gaposhkin, “A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals,” Math. USSR-Sb. 33, 1–17 (1977). https://doi.org/10.1070/sm1977v033n01abeh002407
2. V. F. Gaposhkin, “Individual ergodic theorem for normal operators in L
2,” Funct. Anal. Its Appl. 15, 14–18 (1981). https://doi.org/10.1007/bf01082374
3. R. L. Jones, R. Kaufman, J. M. Rosenblatt, and M. Wierdl, “Oscillation in ergodic theory,” Ergodic Theory Dyn. Syst. 18, 889–935 (1998). https://doi.org/10.1017/s0143385798108349
4. S. Demir, “A generalization of Calderón transfer principle,” J. Comput. Math. Sci. 9, 325–329 (2018). https://doi.org/10.29055/jcms/761
5. R. Caballero and A. de la Torre, “An atomic theory of ergodic H
p spaces,” Stud. Math. 82, 39–59 (1985). https://doi.org/10.4064/sm-82-1-39-59