Author:
Kulaev R. Ch.,Pogrebkov A. K.,Shabat A. B.
Reference10 articles.
1. Tsarev, S. P. “The Geometry of Hamilton Systems of Hydrodynamic Type. The Generalized Hodograph Method”, Math. USSR, Izv. 37, No. 2, 397–419 (1991).
2. Rogers, C., Schief, W. K. Bäcklund and Darboux Transformations: Geometry and Modern Application in Soliton Theory (Cambridge Univ. Press, Cambridge, 2002).
3. Dubrovin, B. A., Novikov, S. P. “Hydrodynamics ofWeaklyDeformedSoliton Lattices”, Differential geometry and Hamiltonian theory. Russ. Math. Surv. 44, No. 6, 35–124 (1989).
4. Zakharov, V. E. “Description of the n-Orthogonal Curvilinear Coordinate Systems and Hamiltonian Integrable Systems of Hydrodynamic Type. Part 1. Integration of the Lame Equations”, DukeMath. J. 94, No. 1, 103–139 (1998).
5. Eisenhart L.P. A treatise on the differential geometry of curves and surfaces (Kessinger Publ., LLC, 2010).
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献