The Geometry of One-Dimensional and Spatial Hardy Type Inequalities
-
Published:2022-11
Issue:11
Volume:66
Page:46-78
-
ISSN:1066-369X
-
Container-title:Russian Mathematics
-
language:en
-
Short-container-title:Russ Math.
Subject
General Mathematics
Reference86 articles.
1. V. I. Levin, “Notes on inequalities. II: On a class of integral inequalities,” Rec. Math. (Nov. Ser.) 4, 309–324 (1938).
2. F. G. Avkhadiev and K.-J. Wirths, “Unified Poincaré and Hardy inequalities with sharp constants for convex domains,” Z. Angew. Math. Mech. 87, 632–642 (2007). https://doi.org/10.1002/zamm.200710342
3. F. G. Avkhadiev and K.-J. Wirths, “Sharp Hardy-type inequalities with Lamb’s constants,” Bull. Belg. Math. Soc. Simon Stevin 18, 723–736 (2011). https://doi.org/10.36045/bbms/1320763133
4. F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4,” Izv. Math. 78, 855–876 (2014). https://doi.org/10.1070/IM2014v078n05ABEH002710
5. F. G. Avkhadiev, “Selected results and open problems on Hardy–Rellich and Poincaré–Friedrichs inequalities,” Anal. Math. Phys 11, 134 (2021). https://doi.org/10.1007/s13324-021-00568-3