Infinitely Many Solutions for Schrödinger–Kirchhoff-Type Equations Involving the Fractional p(x, ·)-Laplacian
-
Published:2023-08
Issue:8
Volume:67
Page:67-77
-
ISSN:1066-369X
-
Container-title:Russian Mathematics
-
language:en
-
Short-container-title:Russ Math.
Subject
General Mathematics
Reference21 articles.
1. A. Bahrouni and V. D. Rădulescu, “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent,” Discrete Contin. Dyn. Syst. S 11, 379–389 (2018). https://doi.org/10.3934/dcdss.2018021
2. L. Del Pezzo and J. D. Rossi, “Trace for fractional Sobolev spaces with variable exponents,” Adv. Oper. Theory 2, 435–446 (2017). https://doi.org/10.22034/aot.1704-1152
3. U. Kaufmann, J. D. Rossi, and R. Vidal, “Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians,” Electron. J. Qualitative Theory Differ. Equations, No. 76, 1–10 (2017). https://doi.org/10.14232/ejqtde.2017.1.76
4. D. Applebaum, “Lévy processes—From probability to finance and quantum groups,” Not. Am. Math. Soc. 51, 1336–1347 (2004).
5. L. Caffarelli, “Non-local diffusions, drifts and games,” in Nonlinear Partial Differential Equations, Ed. by H. Holden and K. Karlsen, Abel Symposia, Vol. 7 (Springer, Berlin, 2012), pp. 37–52. https://doi.org/10.1007/978-3-642-25361-4_3