1. Montero, P. and Vilar, J.A., TSclust: An R Package for time series clustering, J. Stat. Software, 2014, vol. 62, no. 1, pp. 1–43. https://doi.org/10.18637/jss.v062.i01
2. Bennett, R., Spatial Time Series: Analysis–Forecasting–Control, London: Pion, 1979.
3. Wei, W.S., Time Series Analysis: Univariate and Multivariate Methods, Reading, Mass.: Addison-Wesley, 1989.
4. Kalpakis, K., Gada, D., and Puttagunta, V., Distance measures for effective clustering of ARIMA time-series, Proc. 2001 IEEE Int. Conf. on Data Mining, San Jose, Calif., 2001, IEEE, 2001, pp. 273–280. https://doi.org/10.1109/ICDM.2001.989529
5. Ahonen, T.E., Lemström, K., and Linkola, S., Compression-based similarity measures in symbolic, polyphonic music, Proc. 12th Int. Society for Music Information Retrieval Conf. (ISMIR 2011), Klapuri, A. and Leider, C., Eds., Miami: Univ. Miami, 2011, pp. 91–96.