Neural Network Sentiment Classification of Russian Sentences into Four Classes
-
Published:2023-12
Issue:7
Volume:57
Page:727-739
-
ISSN:0146-4116
-
Container-title:Automatic Control and Computer Sciences
-
language:en
-
Short-container-title:Aut. Control Comp. Sci.
Author:
Kosterin M. A.ORCID, Paramonov I. V.ORCID
Reference20 articles.
1. Potts, C., Wu, Z., Geiger, A., and Kiela, D., Dynasent: A dynamic benchmark for sentiment analysis, Proc. 59th Annu. Meeting of the Association for Computational Linguistics and the 11th Int. Joint Conf. on Natural Language Processing, Zong, Ch., Xia, F., Li, W., and Navigli, R., Eds., Association for Computational Linguistics, 2020, vol. 1, pp. 2388–2404. https://doi.org/10.18653/v1/2021.acl-long.186 2. Hamborg, F. and Donnay, K., NewsMTSC: A dataset for (multi-)target-dependent sentiment classification in political news articles, Proc. 16th Conf. of the European Chapter of the Association for Computational Linguistics: Main Volume, Merlo, P., Tiedemann, J., and Tsarfaty, R., Eds., Association for Computational Linguistics, 2021, pp. 1663–1675. https://doi.org/10.18653/v1/2021.eacl-main.142 3. Liu, B., Sentiment Analysis and Opinion Mining, Synthesis Lectures on Human Language Technologies, vol. 5, Cham: Springer, 2012. https://doi.org/10.1007/978-3-031-02145-9 4. Habimana, O., Li, Yu., Li, R., Gu, X., and Yu, G., Sentiment analysis using deep learning approaches: An overview, Sci. China Inf. Sci., 2020, vol. 63, no. 1, p. 111102. https://doi.org/10.1007/s11432-018-9941-6 5. Smetanin, S. and Komarov, M., Deep transfer learning baselines for sentiment analysis in Russian, Inf. Process. Manage., 2021, vol. 58, no. 3, p. 102484. https://doi.org/10.1016/j.ipm.2020.102484
|
|