Coke Quality and Blast-Furnace Performance

Author:

Muchnik D. A.,Trikilo A. I.,Lyalyuk V. P.,Kassim D. A.

Publisher

Allerton Press

Subject

Process Chemistry and Technology,Fuel Technology,Environmental Chemistry

Reference13 articles.

1. Tovarovskii, I.G. and Lyalyuk, V.P., Evolyutsiya domennoi plavki (Evolution of Blast Furnace Smelting), Dnepropetrovsk: Porogi, 2001.

2. Express-information of the All-Union Institute of Scientific and Technical Information, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 1972, nos. 1–2, pp. 7–42.

3. Domennye pechi. Normativy raskhoda koksa. Rukovodyashchii dokument (Blast Furnaces. Coke Consumption Normatives: Guide), Moscow: Minchermet SSSR, 1978, pp. 1–14.

4. Borovikov, V., Statistika. Iskusstvo analiza dannykh na komp’yutere dlya professionalov (Statistics: The Art of Computer Data Analysis for Professionals), St. Petersburg: Piter, 2003, 2nd ed.

5. Kats, M.D. and Davidenko, A.M., Mathematical modeling and optimization of the technological mode of blast-furnace smelting using information recorded in the normal operation mode, Metall. Gornorudn. Prom-st, 2007, no. 3, pp. 15–20.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Technological Advancements in Cokemaking;Mineral Processing and Extractive Metallurgy Review;2024-01-02

2. An Appropriate Approach to Recognize Coke Size Distribution in a Blast Furnace;Processes;2023-01-06

3. Data Mining and Machine Learning to Predict the Sulphur Content in the Hot Metal of a Coke-Fired Blast Furnace;Communications in Computer and Information Science;2023

4. A novel committee machine to predict the quantity of impurities in hot metal produced in blast furnace;Computers & Chemical Engineering;2022-07

5. Prediction of Sulfur in the Hot Metal based on Data Mining and Artificial Neural Networks;Proceedings of the 11th International Conference on Data Science, Technology and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3