1. F. Khojasteh, S. Shukla, and S. Radenovic, “A new approach to the study of fixed point theory for simulation functions,” Filomat 29, 1189–1194 (2015). doi 10.2298/FIL1506189K
2. H. Argoubi, B. Samet, and C. Vetro, “Nonlinear contractions involving simulation functions in a metric space with a partial order,” J. Nonlinear Sci. Appl. 8, 1082–1094 (2015).
3. A. Nastasi and P. Vetro, “Fixed point results on metric and partial metric spaces via simulation functions,” J. Nonlinear Sci. Appl. 8, 1059–1069 (2015).
4. A.-F. Roldán-López-de-Hierro, E. Karapinar, C. Roldán-López-de-Hierro, and J. Martínez-Moreno, “Coincidence point theorems on metric spaces via simulation functions,” J. Comput. Appl. Math. 275, 345–355 (2015). doi 10.1016/j.cam.2014.07.011
5. M. Demma, R. Saadati, and P. Vetro, “Fixed point results on b-metric space via Picard sequences and b-simulation functions,” Iran. J. Math. Sci. Inf. 11, 123–136 (2016). doi 10.7508/ijmsi.2016.01.011