Queue Length in a System with an Autoregressive Hyperexponential Incoming Flow at a Critical Load
-
Published:2023-12
Issue:4
Volume:47
Page:189-196
-
ISSN:0278-6419
-
Container-title:Moscow University Computational Mathematics and Cybernetics
-
language:en
-
Short-container-title:MoscowUniv.Comput.Math.Cybern.
Reference6 articles.
1. R. Gusella, ‘‘Characterizing the variability of arrival processes with indexes of dispersion,’’ IEEE J. Sel. Areas Commun. 9 (2), 203–211 (1991). https://doi.org/10.1109/49.68448
2. V. Paxson and S. Floyd, ‘‘Wide area traffic: the failure of Poisson modelling,’’ IEEE/ACM Trans. Networking (ToN) 3 (3), 226–244 (1995). https://doi.org/10.1109/90.392383
3. G. U. Hwang, B. D. Choi, and J.-K. Kim, ‘‘The waiting time analysis of a discrete-time queue with arrivals as a discrete autoregressive process of order 1,’’ J. Appl. Probab. 39 (3), 619–629 (2002). https://doi.org/10.1239/jap/1034082132
4. F. Kamoun, ‘‘The discrete-time queue with autoregressive inputs revisited,’’ Queueing Syst. 54, 185–192 (2006). https://doi.org/10.1007/s11134-006-9591-3
5. V. G. Ushakov and N. G. Ushakov, ‘‘Single server queueing system with dependent interarrival times,’’ Inform. Primen. 11 (2), 112–116 (2017). https://doi.org/10.14357/19922264170212