1. Barakhnin, V.B., Kozhemyakina, O.Yu., Pastushkov, I.S., and Rychkova, E.V., Automated classification of Russian poetic texts by genres and styles, Vestn. Novosib. Gos. Univ.,Ser.: Lingvist. Mezhkul’t. Kommun., 2017, vol. 15, no. 3, pp. 13–23.
2. Batura, T.V., Formal methods for determining authorship of texts, Vestn. Novosib. Gos. Univ.,Ser.: Inf. Tekhnol., 2012, vol. 10, no. 4, pp. 81–94.
3. Dos Santos, C.N. and Gatti, M., Deep convolutional neural networks for sentiment analysis of short texts, COLING 2014—25th International Conference on Computational Linguistics, Proceedings of COLING 2014: Technical Papers, 2014, pp. 69–78.
4. Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., and Demirbas, M., Short text classification in twitter to improve information filtering, SIGIR 2010 Proceedings—33rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010, pp. 841–842.
5. Kiritchenko, S., Zhu, X., and Mohammad, S.M., Sentiment analysis of short informal texts, J. Artif. Intell. Res., 2014, vol. 50, pp. 723–762.