Author:
Avetisyan T. V.,Menyailov D. V.,Preobrazhensky A. P.
Reference26 articles.
1. Dugué, N. and Perez, A., Social capitalists on Twitter: Detection, evolution and behavioral analysis, Soc. Network Anal. Min., 2014, vol. 4, no. 1, p. 178. https://doi.org/10.1007/s13278-014-0178-4
2. Guille, A. and Favre, C., Mention-anomaly-based event detection and tracking in Twitter, 2014 IEEE/ACM Int. Conf. on Advances in Social Networks Analysis and Mining (ASONAM 2014), Beijing, 2014, IEEE, 2014, pp. 375–382. https://doi.org/10.1109/asonam.2014.6921613
3. Bazenkov, N.I. and Gubanov, D.A., Overview of information systems for social network analysis, Upr. Bol’shimi Sist. Sb. Trudov, 2013, no. 41, pp. 357–394. https://elibrary.ru/rdqayj.
4. Rubtsova, Yu.V., Automatic term extraction approach in dynamic text collection for building word-emotion dictionary for Twitter, Dokl. Tomsk. Gos. Univ. Sist. Upr. Radioelektron., 2014, no. 3, pp. 140–144. https://elibrary.ru/tmlphf.
5. Basarab, M., Ivanov, I., Kolesnikov, A., and Matveev, V., Detection of illegal activities in cyberspace on the basis of the social networks analysis: Algorithms, methods, and tools (a survey), Vopr. Kiberbezopasnosti, 2016, no. 4, pp. 11–19. https://doi.org/10.21681/2311-3456-2016-4-11-19