1. Brovko, G.L. and Finoshkina, A. S., The way to apply new objective derivations in plasticity models under finite deformations, Sovremennye problemy termovyazkoplastichnosti v prikladnykh zadachakh analiza konstruktsii i tekhnologii vysokikh parametrov. Tr. VI shkoly-seminara (Proc. 6th School-Seminar Modern Problems of Thermal Viscoelasticity in Applied Problems on Structure Analysis and High Parameters Technologies), Moscow, 2013, pp. 24–33.
2. Shutkin, A. S., Approach for generalizing the constitutive relations of deformed solids for finite deformations area, Mekh. Kompoz. Mater. Konstr., 2010, vol. 16, no. 2, pp. 166–180.
3. IPyushin, A.A. and Pobedrya, B.E., Osnovy matematicheskoi teorii termovyazkouprugosti (Foundations of Mathematical Theory of Thermal Viscoelasticity), Moscow: Nauka, 1970.
4. Gordon, RJ. and Schowalter, W.R., Anisotropic fluid theory: a different approach to the dumbbell theory of dilute polymer solutions, Trans. Soc. Rheol, 1972, vol. 16, pp. 79–97.
5. Lur'e, A.I., Nelineinaya teoriya uprugosti (The Theory of Nonlinear Elasticity), Moscow: Nauka, 1980.