1. A. V. Bolsinov and A. T. Fomenko, Inteyrable Hamiltonian Systems. Geometry, Topology, Classification (Reg. Khaot. Dynam., Izhevsk, 1999; Chapman and Hall, CRC, Boca Raton. Fl., 2004).
2. V. O. Manturov, “Bifurcations, Atoms, and Knots,” Vestnik Mosk. Univ., Matem. Mekhan., No. 1, 3 (2000) [Moscow Univ. Math. Bull. 55 (1), 1 (2000)].
3. A. T. Fomenko, “The Topology of Surfaces of Constant Energy in Integrable Hamiltonian Systems, and Obstructions to Integrability,” Izvestiya Akad. Nauk SSSR, Ser. Matem. 50 (6), 1276 (1986) [Math, of the USSR-Izvestiya n29 (3), 629 (1987)].
4. A. T. Fomenko and H. Zieschang, “A Topological Invariant and a Criterion for the Equivalence of Integrable Hamiltonian Systems with Two Degrees of Freedom,” Izvestiya Akad. Nauk SSSR, Ser. Matem. 54 (3), 546 (1990) [Math, of the USSR-Izvestiya 36 (3), 567 (1991)].
5. A. T. Fomenko, E. A. Kudryavtseva, and I. M. Nikonov, “Maximally Symmetric Cell Decompositions of Surfaces and their Coverings,” Matem. Sbornik 199 (9), 3 (2008) [Sbornik: Math. 199 (9), 1263 ( 2008)].