1. M. V. Platonova and K. S. Ryadovkin, ‘‘Asymptotic behavior of the mean number of particles of branching random walk on $$\mathbf{Z}^{d}$$ with periodic sources of branching,’’ Zap. Nauchn. Seminarov POMI 466, 234–256 (2017).
2. M. V. Platonova and K. S. Ryadovkin, ‘‘On the mean number of particles of a branching random walk on $$\mathbb{Z}^{d}$$ with periodic sources of branching,’’ Dokl. Math. 97, 140–143 (2018). https://doi.org/10.1134/s1064562418020102
3. P. Brémaud, Markov Chains: Gibbs Fields, Monte-Carlo Simulation, and Queues, Texts in Applied Mathematics, Vol. 31 (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-45982-6
4. B. A. Sevast’yanov, Branching Processes (Nauka, Moscow, 1971).
5. How fast does a general branching random walk spread?;J. D. Biggins,1997