1. Gorban’, A.N., Dudin-Barkovskii, V.L., Kirdin, A.N., Mirkes, E.M., Novokhod’ko, A.Yu., Rossiev, D.A., Terekhov, S.A., Senashova, M.Yu., and Tsaregorodtsev, V.G., Neiroinformatika (Neuroinformatics), Novosibirsk: Nauka, 1998.
2. Kruglov, V.V. and Borisov, V.V., Iskusstvennye neironnye seti. Teoriya i praktika (Artificial Neural Networks: Theory and Practice), Moscow: Goryachaya Liniya-Telekom, 2001.
3. LeCun, Ya., Bengio, Yo., and Hinton, G., Deep learning, Nature, 2015, vol. 521, no. 7553, pp. 436–444. https://doi.org/10.1038/nature14539
4. Bazenkov, N., Vorontsov, D., Dyakonova, V., Zhilyakova, L., Zakharov, I., Kuznetsov, O., Kulivets, S., and Sakharov, D., Discrete modeling of neuronal interaction in multi-transmitter networks, Sci. Tech. Inf. Process., 2018, vol. 45, no. 5, pp. 283–296. https://doi.org/10.3103/S0147688218050015
5. Osipov, V.Yu. and Nikiforov, V.V., Recurrent neural networks with controlled elements in restoring frame flows, Inf.-Upravlyayushchie Sist., 2019, no. 5, pp. 10–17. https://doi.org/10.31799/1684-8853-2019-5-10-17