Author:
Protserov S. D.,Shishkin A. G.
Reference25 articles.
1. Rabiner, L.R. and Sambur, M.R., An algorithm for determining the endpoints of isolated utterances, Bell Syst. Tech. J., 1957, vol. 54, no. 2, pp. 297–315. https://doi.org/10.1002/j.1538-7305.1975.tb02840.x
2. Zhang, R.Z. and Cui, H.J., Speech endpoint detection algorithm analyses based on short-term energy, Audio Eng., 2005, vol. 7, pp. 52–59.
3. Ghosh, P.K., Tsiartas, A., and Narayanan, S., Robust voice activity detection using longterm signal variability, IEEE Trans. Audio, Speech, Lang. Process., 2011, vol. 19, no. 3, pp. 600–613. https://doi.org/10.1109/TASL.2010.2052803
4. Ma, Ya. and Nishihara, A., Efficient voice activity detection algorithm using long-term spectral flatness measure, EURASIP J. Audio, Speech, Music Process., 2013, vol. 2013, p. 87. https://doi.org/10.1186/1687-4722-2013-21
5. Atal, B.S., Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification, J. Acoust. Soc. Am., 1974, vol. 55, no. 6, pp. 1304–1322. https://doi.org/10.1121/1.1914702