The Inverse Bin-Packing Problem Subject to Qualitative Criteria
-
Published:2017-12
Issue:6
Volume:44
Page:440-449
-
ISSN:0147-6882
-
Container-title:Scientific and Technical Information Processing
-
language:en
-
Short-container-title:Sci. Tech. Inf. Proc.
Subject
General Computer Science
Reference79 articles.
1. Martello, S. and Toth, P., Solution of the zero-one multiple knapsack problem, Eur. J. Oper. Res., 1980, vol. 4, no. 4, pp. 276–283. 2. Johnson, D.S., Demers, A., Ullman, J.D., Garey, M.R., and Graham, R.L., Worst-case performance bounds for simple one-dimensional packing algorithms, SIAM J. Comput., 1974, vol. 3, no. 4, pp. 299–325. 3. Coffman, E.G., Jr., Leung, J.Y.-T., and Ting, D., Bin packing: Maximizing the number of pieces packed, Acta Inf., 1978, vol. 9, pp. 263–271. 4. Coffman, E.G., Jr., E.G. and Leung, J.Y., Combinatorial analysis of an efficient algorithm for processor and storage allocation, SIAM J. Comput., 1979, vol. 8, no. 2, pp. 202–217. 5. Graham, R.L., Lawler, E.L., Lenstra, J.K., and Kan, A.R., Optimization and approximation in deterministic sequencing and scheduling: A survey, Ann. Discrete Math., 1979, vol. 5, pp. 287–326.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|