1. DARPA Intrusion Detection Data Sets. http://www.ll.mit.edu/ideval/data.
2. Bhattacharyya, D.K. and Kalita, J.K., Network Anomaly Detection. A Machine Learning Perspective, CRC Press, 2014.
3. Platonov, V.V. and Semenov, P.O., Construction of an adaptive system for detecting network attacks, Sb. materialov 24 konferentsii “Metody i tekhnicheskie sredstva obespecheniya bezopasnosti informatsii” (Proc. 24th Conf. Methods and Technical Means of Information Security), St. Petersburg: Izd. politekh. univ., 2015, pp. 95–96.
4. Vapnik, V.N., The Nature of Statistical Learning Theory, Springer, 2000, 2nd ed.
5. Hsu, C.-W., Chang, C.-C., and Lin, C.-J., A Practical Guide to Support Vector Classification, Taipei: Department of Computer Science, National Taiwan University, 2003.