1. Zhen, N., Influence of weld defect on construction quality of steel structure, Steel Struct., 2013, vol. 28, no. 3, pp. 66–71.
2. Vilar, R., Zapata, J., and Ruiz, R., An automatic system of classification of weld defects in radiographic images, NDT E Int., 2009, vol. 42, no. 5, pp. 467–476. https://doi.org/10.1016/j.ndteint.2009.02.004
3. Schmidhuber, J., Deep learning in neural networks: An overview, Neural Networks, 2015, vol. 61, pp. 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
4. Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew, M.S., Deep learning for visual understanding: A review, Neurocomputing, 2016, vol. 187, pp. 27–48. https://doi.org/10.1016/j.neucom.2015.09.116
5. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X., TensorFlow: A system for large-scale machine learning, Proc. 12th USENIX Conf. on Operating Systems Design and Implementation, Savannah, Ga., 2016, Berkely, Calif.: USENIX Association, 2016, pp. 265–283.