1. Kabaldin, Yu.G., Shatagin, D.A., Anosov, M.S., Kolchin, P.V., and Kuz’minshina, A.M., Iskusstvennyi intellekt i kiber-fizicheskie mekhanoobrabatyvayushchie sistemy v tsifrovom proizvodstve: Monografiya (Artificial Intelligence and Cyber-Physical Machining Systems in Digital Manufacturing: Monograph), Kabaldin, Yu.G., Ed., Nizhny Novgorod: Nizhegorod. Gos. Univ. im. A.A. Alekseeva, 2018.
2. Kabaldin, Yu.G., Bilenko, S.V., and Seryi, S.V., Upravlenie dinamicheskim kachestvom metallorezhushchikh stankov na osnove iskusstvennogo intellekta (Dynamic Quality Control of Metal-Cutting Machines by Means of Artificial Intelligence), Komsomolsk-on-Amur: Komsomol’sk-na-Amure Gos. Tekh. Univ., 2009.
3. Kabaldin, Yu.G., Laptev, I.L., Shatagin, D.A., and Seryi, S.V., Diagnostics of output parameters of real time cutting based on fractal and wavelet analyses using National Instruments and nVidia CUDA software and hardware, Vestn. Mashinostr., 2014, no. 8, pp. 80–82.
4. Kabaldin, Yu.G., Laptev, I.L., Shatagin, D.A., et al., Intelligent systems for diagnostics of equipment condition and tool wear, Mashinostroenie, 2014, no. 2, pp. 47–50.
5. Kabaldin, Yu.G., Laptev, I.L., Shatagin, D.A., et al., Real-time assessment of cutting tool condition based on nonlinear dynamics approaches using nVidia CUDA in the LABVIEW software, Tr. Nizhegorod. Gos. Univ. im. A.A. Alekseeva, 2013, no. 5 (102), pp. 114–121.