Study of Wear Resistance of a Radial Bearing Covered by a Polymer Coating with an Axial Groove on a Nonstandard Base Surface

Author:

Khasyanova D. U.,Mukutadze M. A.

Abstract

Abstract This paper is devoted to study of increasing the wear resistance of a radial plain bearing. The operation of a bearing is considered in the hydrodynamic mode by means of application of an antifriction polymer composite coating with an axial groove and the micropolar properties on a nonstandard bearing surface adapted to the friction conditions of a bearing bush. The effect of pressure and temperature in the turbulent friction mode on the rheological properties of the lubricant is taken into account. Based on the equation for the micropolar fluid flow in a “thin layer” as well as on the dependence of the micropolar lubricant on the pressure and temperature and on the continuity equation, a self-similar solution has been found taking into account the axial groove on the surface of a bearing bush and without taking into account the axial groove. As a result, the velocity and pressure fields in the axial groove and on the surface of a polymer antifriction composite coating have been determined as has the load capacity and friction force, which make it possible to increase the load capacity, reduce the friction coefficient (increase wear resistance), and also increase the duration of the hydrodynamic mode. The results of numerical analysis of theoretical models and experimental evaluation of the suggested design are presented to verify and confirm the efficiency of the models obtained.

Publisher

Allerton Press

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3