1. Ivashov, S.V., The system of predictive analytics of equipment performance based on the data analysis about the state of working units, Materialy XX Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Sovremennaya nauka: aktual’nye voprosy, dostizheniya i innovatsii” (Proc. XX Int. Sci.-Pract. Conf. “Modern Science: Actual Problems, Achievements, and Innovations”), Anapa, 2019, pp. 166–169.
2. Frolova, M.M. and Chepyzhov, D.S., Predictive technical maintenance as a means of ensuring the economic security of industrial enterprises, Materialy VII Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Ekonomicheskaya bezopasnost’ Rossii: problemy i perspektivy” (Proc. VII Int. Sci.-Pract. Conf. “Economic Security of Russia: Problems and Prospects”), Moscow, 2019, pp. 271–275.
3. Ostroukh, A.V., Pronin, T.B., Volosova, A.V., et al., Hyperautomation in the auto industry, Russ. Eng. Res., 2021, vol. 41, no. 6, pp. 532–535.
4. Kuftinova, N.G., Ostroukh, A.V., Karelina, M.Yu., et al., Hybrid smart systems for big data analysis, Russ. Eng. Res., 2021, vol. 41, no. 6, pp. 536–538.
5. Shi, W., Cao, J., Zhang, Q., et al., Edge computing: vision and challenges, IEEE Internet Things J., 2016, vol. 3, no. 5, pp. 637–646.