1. Sirotin, P.V. and Lebedinskii, I.Yu., The analysis of vibro-acoustic loading of the workplace operators of combine harvesters, Sovrem. Naukoemkie Tekhnol., 2018, no. 1 (53), pp. 113–121. https://tkn.isuct.ru/e-publ/snt/ru/node/2027.
2. Sirotin, P.V., Sapegin, A.G., and Zlenko, S.V., An experimental estimation of the smoothness of movement of a self-propelled forage harvester, Tr. Tsentr. Nauchno-Issled. Avtomob. Avtomotor. Inst., 2017, no. 4 (271), pp. 67–74. http://m.nami.ru/directions/scientific-activity/collection-of-the-works-of-us/trudy_271.
3. Chernenko, A.B. and Gasanov, B.G., Pnevmaticheskie sistemy vtorichnogo podressorivaniya kabin mnoosnykh avtomobilei. Monografiya (Pneumatic Systems for Secondary Suspension of Cabs of Multi-Axle Vehicles: Monograph), Novocherkassk: Yuzhno-Ross. Gos. Politekh. Univ., 2012. https://elibrary.ru/item.asp?id= 19646906.
4. Krzyzynski, T., Maciejewski, I., Meyer, L., and Meyer, H., A method of shaping the vibro-isolation properties of semi-active and active systems, in Modeling and Control Design of Vibration Reduction Systems: Methods and Procedures of Selecting Vibro-Isolation Properties, New York: Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-03047-6_8.
5. Krzyzynski, T., Maciejewski, I., Meyer, L., and Meyer, H., Computational method of selecting vibro-isolation properties, in Modeling and Control Design of Vibration Reduction Systems: Methods and Procedures of Selecting Vibro-Isolation Properties, New York: Springer-Verlag, 2019. https://doi.org/10.1007/978-3-030-03047-6_6.