1. N. Temirgaliev, Sh. Abikenova, Sh. Azhgaliev, and G. Taugynbaeva, “Theory of Radon transform in the concept of computational numerical diameter and methods of the quasi-Monte Carlo theory,” Bull. Gumilyov Eurasian Natl. Univ., Math. Comput. Sci. Mech. Ser., No. 4, 8–53 (2019). http://rep.enu.kz/handle/enu/2226.
2. N. Temirgaliev, Sh. K. Abikenova, Sh. U. Azhgaliev, and G. E. Taugynbaeva, “The Radon transform in the scheme of C(N)D-investigations and the quasi-Monte Carlo theory,” Russ. Math. 64, 87–92 (2020). https://doi.org/10.3103/s1066369x2003010x
3. F. Natterer, The Mathematics of Computerized Tomography, Classics of Applied Mathematics (SIAM, Philadelphia, 2001).
4. F. Natterer, “A Sobolev space analysis of picture reconstruction,” SIAM J. Appl. Math. 39, 402–411 (1980). https://doi.org/10.1137/0139034
5. I. M. Gel’fand, M. I. Graev, and M. Ya. Vilenkin, Integral Geometry and Representation Theory, Generalized Functions, Vol. 5 (GIFML, Moscow, 1962; Academic, New York, 1966).