1. Goryacheva, I.G., Dobychin, M.N., and Torskaya, E.V., Simulation of the conditions of contact fatigue damages of the rolling surface, in Kontaktno-ustalostnye povrezhdeniya koles gruzovykh vagonov (Contact-Fatigue Damages of Wheels of the Freight Cars), Zakharov, S.M., Ed., Moscow: Intekst, 2004, pp. 58–97.
2. Pavlov, V.F., Kirpichev, V.A., and Vakulyuk, V.S., Prognozirovanie soprotivleniya ustalosti poverkhnostno-uprochnennykh detalei po ostatochnym napryazheniyam (Forecasting of Fatigue Resistance of Surface-Hardened Parts by Residual Stresses), Samara: Samar. Nauch. Tsentr, Ross. Akad. Nauk, 2012.
3. Seo, J.W., Goo, B.C., Choi, J.B., and Kim, Y.J., Effects of metal removal and residual stress on the contact fatigue life of railway wheels, Int. J. Fatigue, 2008, vol. 30, nos. 10–11, pp. 2021–2029.
4. Paladugu, M. and Scott Hyde, R., Influence of microstructure on retained austenite and residual stress changes under rolling contact fatigue in mixed lubrication conditions, Wear, 2018, vols. 406–407, pp. 84–91.
5. Fimkin, A.I. and Dolotkazin, D.B., Experimental determination of the longitudinal residual stresses in railway rails, Vestn. Mosk. Inst. Inzh. Zheleznodorozhn. Transp., 2001, no. 6, pp. 28–39.