Use of biodegradable polycaprolactone matrix for filling bone defects (experimental study)

Author:

Popkov A. V.1ORCID,Gorbach E. N.1ORCID,Kononovich N. A.1ORCID,Tverdokhlebov S. I.2ORCID,Bolbasov E. N.2ORCID,Popkov D. A.1ORCID,Gorbach E. S.1ORCID

Affiliation:

1. National Ilizarov Medical Research Centre for Traumatology and Ortopaedics

2. National Research Tomsk Polytechnic University

Abstract

Background. There are unresolved issues in bone defect management associated with complications, invasiveness and long duration of treatment. The use of elastic implants made of bioactive biodegradable materials that take any form of defect could close many of them.The aim. To investigate features of reparative regeneration in filling bone defects with an elastic degradable implant made of polycaprolactone (PCL) with and without hydroxyapatite (HA).Materials and methods. The study was carried out on 10 adult mongrel dogs. A non-through cylindrical hole, 4 mm in diameter and 10 mm deep, was modeled in the upper third of the diaphysis of the tibia. The defects thus formed were filled with an elastic degradable implant made of polycaprolactone. In Group 1, HA was not added to polycaprolactone, while HA was added in dogs of Group 2. Radiographic and histological methods were used to study the results.Results. It was found that the tested materials did not cause toxic and allergic reactions, both local and general, during intravital observations and in post-mortem anatomical preparations. After 28 days in both series, the implant biodegraded and was replaced by bone tissue. The proportion of the bone component and the numerical density of microvessels in the defect zone in Group 2 were significantly higher than in Group 1.Conclusion. Elastic implants produced of polycaprolactone by electrospinning are biologically compatible, biodegradable and can be used to heal bone defects. Hydroxyapatite that was added stimulates the activity of osteogenesis.

Publisher

FSPSI SCFHHRP

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3