The role of SH groups in the regulation of Gardos channels in glucose deficiency

Author:

Birulina Ju. G.1ORCID,Petrova I. V.1ORCID,Trubacheva O. A.2ORCID,Gusakova S. V.1ORCID

Affiliation:

1. Siberian State Medical University

2. Siberian State Medical University; Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy Sciences

Abstract

   Background. Disruption of the energy balance of erythrocytes under conditions of a decrease in the glycolysis level can cause a change in the ion permeability of their membrane.   The aim. To study Ca2+-dependent potassium permeability of the erythrocytes membrane in the presence of SH group modifiers under conditions of glucose deficiency.   Materials and methods. The study used precipitated erythrocytes obtained from the blood of 20 male Wistar rats. The change in the Ca2+-dependent potassium conductivity of the erythrocyte membrane was determined using the potentiometric method. The A23187-and redox-induced hyperpolarization responses of erythrocytes were evaluated.   Results. Glucose deficiency in the medium, as well as the use of the glycolysis inhibitor 2-deoxyglucose, led to an increase in the amplitude of A23187-stimulated membrane hyperpolarization by the opening of the Gardos channels. At the same time, the redox-dependent hyperpolarization of the erythrocyte membrane turned out to be insensitive to a decrease in the glucose content in the medium and to the glycolysis inhibition. The effects of SH group modifiers in the normal incubation medium and under glucose deficiency turned out to be multidirectional and depended on the method of stimulation of Gardos channels.   Conclusion. The results obtained indicate that metabolic disorders in erythrocytes under conditions of glucose deficiency lead to a change in the mechanisms of control of Gardos channels with the participation of SH groups of the proteins of these channels or their regulatory proteins.

Publisher

FSPSI SCFHHRP

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3