Author:
Mamman John Ojima,Aboiyar Terhemen
Abstract
This paper presents a numerical technique for solving fractional integrals of functions by employing the trapezoidal rule in conjunction with the finite difference scheme. The proposed scheme is only a simple modification of the trapezoidal rule, in which it is treated as an algorithm in a sequence of small intervals for finding accurate approximate solutions to the corresponding problems. This method was applied to solve fractional integral of arbitrary order α > 0 for various values of alpha. The fractional integrals are described in the Riemann-Liouville sense. Figurative comparisons and error analysis between the exact value, two-point and three-point central difference formulae reveal that this modified method is active and convenient.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献