Abstract
This paper employed the intelligent approach based on machine learning categorized as base and ensemble methods in classifying the disaster risk in the Philippines. It focused on the Decision Trees, Support Vector Machine, Adaptive Boosting Algorithm with Decision Trees, and Support Vector Machine as base estimators. The research used the Exponential Regression for missing value imputation and converted the number of casualties, damaged houses, and properties into five (5) risk levels using Quantile Method. The 10-fold cross-validation was used to validate the proposed algorithms. The experiment shows that Decision Trees and Adaptive Decision Trees are the most suitable models for the disaster data with the score of more than 90%, more than 75%, more than 75% in all the classification metrics (accuracy, precision, recall f1-score) when applied to classification risk levels of casualties, damaged houses and damaged properties respectively.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献