Morphometric, immunohistochemical and ultrastructural examination of age-related structural alterations in optic nerve

Author:

Çilingiroğlu Anlı Serpil1ORCID,Çalgüner Engin2ORCID,Erdoğan Deniz3ORCID,Kadıoğlu Dural4ORCID,Elmas Çiğdem3ORCID,Gozil Rabet5ORCID,Bahçelioğlu Meltem3ORCID

Affiliation:

1. KIRIKKALE ÜNİVERSİTESİ, TIP FAKÜLTESİ, TEMEL TIP BİLİMLERİ BÖLÜMÜ, ANATOMİ ANABİLİM DALI

2. Department of Anatomy, Faculty of Medicine, Kyrenia University, Kyrenia, Turkish Republic of Northern Cyprus

3. GAZI UNIVERSITY

4. EGE UNIVERSITY

5. YÜKSEK İHTİSAS ÜNİVERSİTESİ

Abstract

Aims: As individuals age, there is a known decline in visual function attributed to a reduction in the optic nerve fibers and myelin sheath degeneration. Studies present conflicting findings on whether aging affects axonal integrity in the human optic nerve. This study aims to investigate degenerative changes in the aging rat optic nerve. Methods: The investigation involved 36 Wistar albino rats. The rats were divided into six groups: the newborn, prepubertal, pubertal, junior, adult, and elderly groups. This study investigated optic nerve axon counts, axon diameters, levels of glial fibrillary acidic protein immunoreactivity (GFAP-IR) and nerve growth factor immunoreactivity (NGF-IR), as well as findings from light microscopy (LM) and electron microscopy (EM) in these groups. Results: This study observed age-related alterations in rat optic nerves, including increased diameter, irregular axon count fluctuations (both increases and decreases), elevated astrocyte count, and a simultaneous decline in oligodendrocyte count. Additionally, it was observed that NGF-IR was predominantly at the membrane level in newborns and moderately in the cytoplasm, whereas in older ages, it was evident at both cellular and axonal levels furthermore, it was observed that GFAP-IR increased with age. However, in LM and EM examinations, axonal loss and rarefaction, accumulation of osmiophilic substances, splitting of the myelin sheath, vacuolization, axonal retraction were observed. Conclusion: In this study, it was found that one of the causes of age-related vision loss is the advanced degenerative changes in the optic nerve and it was concluded that the remaining small-diameter myelinated nerve fibers may partially compensate for the sense of vision. Our study reveals that age-related degenerative changes in the central nervous system resemble those in multiple sclerosis (MS), suggesting a potential contribution to MS pathogenesis.

Funder

Gazi Üniversitesi'nin Bilimsel Araştırma Projesi'nden destek alındı.

Publisher

Journal of Health Sciences and Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3