Molecular Docking Studies of Spirostans as MAPK14 (P38α) Inhibitors and Their Potential Use against Cancer

Author:

Lopez-Castillo Guiee Niza1ORCID,Alatriste Victorino1ORCID,Sandoval-Ramírez Jesus1ORCID,Luna Felix1ORCID,Carrasco-Carballo Alan1ORCID

Affiliation:

1. Benemérita Universidad Autónoma de Puebla

Abstract

Spirostans (SPs) are chemical products widely distributed in the plant kingdom; currently, they are studied by their medical applications. Cancer has a high incidence in humans; it reaches second place worldwide deaths. In molecular biology, it has been accepted that Mitogen-Activated Protein p38alpha Kinase (MAPK14 (p38α) is implicated in the regulation of cancer. This study aimed to identify SPs as potential MAPK14 (p38α) inhibitors. From a set of 133 modified SPs, SwissTargetPrediction platform, and molecular docking, it was obtained that 129 chemical structures had molecular interaction with the MAPK14 (p38α). From those molecules, 123 were bound to a specific inhibition site of MAPK14 (p38α), and 6 of the structures resulted in inhibitors similarly to minocycline and dasatinib. One SP had binding couple energy (BCE, kcal/mol) as that of fostamatinib. In addition, 115 modified SPs had better BCE than the minocycline but not as that using fostamatinib. The key amino acids (aa) for the protein kinase MAPK14 (p38α) inhibition were Arg 70, Asp 168, Lys 53, His 148, and Ile 145, at a different interaction level. The BCE was enhanced when the H atom was substituted in C-2, C-11, and C-17 SPs positions. Similarly, the αOH group at C-5 and C-6 upgraded BCE. Stereochemistry and substitution at C-3, C-12, and C-25 did not present significant differences (Kruskal-Wallis test, p <0.05). From all this ensemble of results, it is foreseeable that the SPs can be an option for MAPK14 (p38α) inhibition, a key modulator in cancer processes.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Universitas Muhammadiyah Palangkaraya

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3